PRECISION NEUROSCIENCE. TRANSFORMATIONAL THERAPIES.

CORPORATE OVERVIEW | Q3 2022

Engrail has embarked on the journey to build a leading neuroscience company with transformational therapies

Rapidly advancing programs create **near- and long-term value**

Deep and differentiated precision neuroscience pipeline

Unique approach improving probability of success

Experienced leadership with a track record of success in neuroscience

Our experienced leadership team has rapidly built and advanced the pipeline

Vikram Sudarsan, PhD President and Chief Executive Officer Board Member

EVP. Development and Chief Development Officer Board Member

Kimberly Vanover, PhD Chief Scientific Officer

Eve Taylor, PhD VP, Clinical Development

Esti Arce, PhD VP. Translational Science & Clinical Development

Bill Brubaker, PhD VP, Drug Metabolism & Pharmacokinetics

Jordi Serrats, PhD VP. Preclinical **Development &** Neurobiology

Engrail

Camilla Gomiero VP. Commercial Strategy & Business Development

Neil Mhaskar, PhD VP, Drug Development & Manufacturing

Rex Bosen. CPA Acting Chief Financial Officer

Anil Vootkur, PharmD VP, Corporate Development

full-time employees and consultants

Diverse and accomplished employee base

Our approach will enable us to rapidly bring transformational neuroscience therapies to patients

Deep, differentiated pipeline uses precision neuroscience to address significant unmet needs

Compound	МоА	Lead Indication	Preclinical	Phase 1	Phase 2	Phase 3
GABA modulation portfolio						
ENX-101	GABA _A α 2,3,5 PAM, blocks α 1	Focal epilepsy				
ENX-102	GABA _A α 2,3,5 PAM, blocks α 1	Generalized anxiety disorder				
ENX-106	GABA _A α 2,3,5 PAM, blocks α 1	Undisclosed				
Dopamine modulation portfolio						
ENX-104	D_2/D_3 antagonism	Depression / Anhedonia				
ENX-105	Selective dopamine / serotonin modulation	Mood disorders				
Rare disease portfolio						
ENX-103	Copper transport	Menkes disease				

GABA MODULATOR PORTFOLIO

ENX-101 AND ENX-102 PRECISION TARGETING OF THE GABA $_{\rm A}\,\alpha$ SUBUNIT

Nonselective GABA_A modulators are efficacious treatments, but have significant side effects and risks

Nonselective GABA_A modulators, such as benzodiazepines, are **highly efficacious** and widely used for multiple diseases

Liabilities limit chronic use of nonselective GABA_A modulators

Acute epilepsy Anxiety Agitation Insomnia Spasticity

Sedation Cognitive impairment Ataxia Tachyphylaxis Addiction potential Selective GABA_A α2,3,5 PAMs designed to maximize clinical benefits while reducing side effects and risks

GABA_A, gamma-aminobutyric acid A receptor; PAM, positive allosteric modulator. Cheng T, et al. Neuropsychiatr Dis Treat. 2018;14:1351–1361. Olsen RW. Neuropharmacology. 2018;136:10–12. Zeilhofer HU, et al. Br J Anaesth. 2019;123:e176–e179.

ENX-101 FOR FOCAL EPILEPSY

Epilepsy is an area of high unmet need with a substantial refractory population

>4M US patients with epilepsy

Significant refractory population

Refractory despite many lines of therapy

Searching for the right efficacy / safety drug profile Focal 00% 23% 15% Generalized 00% 27% 14% % of patients on a particular line of therapy 3/4L 5/6L 7L+

Need for medications with new mechanisms of action to **better control disease and improve quality of life for patients**

ENX-101 offers strong value proposition for the treatment of focal epilepsy

Anticipated profile based on preclinical and early clinical findings

Phase 1b clinical data demonstrates favorable tolerability profile, target engagement and lack of tachyphylaxis

Randomized, placebo-controlled, multipleascending dose in healthy volunteers

Primary endpoint:Safety and tolerability

Secondary endpoints:

- ECG/QTc
- Pharmacokinetics
- Biomarker analysis

Phase 1b results

- Mild transient adverse events
- Predictable dose-related exposure

- Confirms target engagement
- Predicts anti-seizure
 efficacy
- Indicates minimal to no effect on alertness, cognition, and motor function with repeated administration

8-week treatment period and 4-week taper

Administered as an adjunct to 1 to 4 antiseizure medications

Primary endpoint

 Median percent change from baseline in focal seizure frequency compared to placebo

Key secondary endpoints

- Responder rate (≥50% reduction)
- Seizure freedom rates

Other exploratory endpoints

- CGI-S and CGI-I
- Quality of life measures

ENX-102 FOR GENERALIZED ANXIETY DISORDER

Substantial need for new options to treat generalized anxiety disorder

+ 9.2 M patients on treatment for anxiety (unspecified)

>60% of patients fail
initial lines of therapy

Patients being treated by line of therapy

Existing therapies have limitations

BZDs are remarkably effective but limited to short-term use

Later-line therapies have unfavorable tolerability and generally less robust efficacy

Need for **new efficacious and safe** treatment options **that can be used chronically**

ENX-102 offers strong value proposition for the treatment of GAD

Anticipated profile based on preclinical and early clinical findings

Registrational-quality phase 2b trial in GAD planned to initiate in 2H 2022

Randomized, double-blind, placebo-controlled adaptive monotherapy study

DOPAMINE MODULATOR PORTFOLIO

ENX-104 AND ENX-105 PRECISION TARGETING OF DOPAMINE RECEPTORS FOR NEUROPSYCHIATRY

Anhedonia is a core symptom of major depressive disorder (MDD) and represents a significant unmet need

Anhedonia is diminished interest or loss of pleasure in almost all activities

Anhedonia is 1 of 2 hallmark symptoms of MDD

- No treatments for MDD specifically target this core symptom
- Anhedonia is associated with poor response to antidepressant treatment

Dysregulated dopaminergic neurotransmission, particularly in reward systems, is thought to underlie anhedonia

>16 M U.S. adults with MDD, of which only ~8 M are treated

3.8 M patients suffer with moderate-to-severe anhedonia

2.3 M have **inadequate response** to at least one antidepressant

High unmet need to treat MDD with anhedonia with more targeted approaches

Clinical proof-of-concept has been established with D₂/D₃ modulation for the reduction of anhedonia and depression

Effective low-dose dopamine D₂/D₃ antagonism

20-17.5 Mean MADRS Score 15-..... 12.5p<0.0001 10----Placebo 1222222222222222 -----Amisulpride 7.5-5-Day 8 Month 1 Month 2 Month 3 End-point Day 0 (LOCF)

Adapted from Boyer P, et al. *Neuropsychobiology*.1999;39:25–32. Copyright © 1999 Karger Publishers, Basel, Switzerland.

Clinical proof-of-concept

- <u>Low-dose</u> amisulpride preferentially blocks presynaptic autoreceptors, causing dopamine release
- Increasing dopamine neurotransmission can <u>alleviate symptoms of</u> <u>depression and anhedonia</u>
- Amisulpride is <u>approved</u> for the treatment of dysthymia <u>in select EU countries</u>

Engrail's dopamine modulation portfolio leverages exciting pharmacology for an array of neuropsychiatric conditions

AGONIST

ENX-104: a potent D₂/D₃ antagonist in development for MDD with anhedonia

ANTAGONIST

DOPAMINE D₂/D₃

2 5

At low doses designed to preferentially block presynaptic autoreceptors to **increase dopamine release**

Highly potent and selective D₂/D₃ antagonist

Excellent brain:plasma exposure supports QD dosing

Proof-of-concept demonstrated in preclinical models

ENX-105: a unique D₂/D₃ antagonist in development for mood disorders

Excellent brain:plasma exposure supports QD dosing

Proof-of-concept demonstrated in preclinical models

ENX-103 FOR MENKES DISEASE

Menkes disease is a fatal ultra-orphan disease resulting from a copper transport defect

Menkes disease is ultra-orphan

• Incidence of 1/35,000 male births

ATP7A mutation leads to a copper transport defect that causes poor distribution of copper throughout the body

- Severe lack of copper, especially in the brain
- Excess copper in other tissues, including kidneys

Prognosis is fatal

• Early death, often before 3 years of age

ATP7A, ATPase copper transporting alpha. Genetic Home References, NIH (https://ghr.nlm.nih.gov/condition/menkes-syndrome#statistics). Lutsenko S. Science. 2020;368:584–585. NORD – Menkes Disease (https://rarediseases.org/rare-diseases/menkes-disease/). Horn N, Wittung-Stafshede P. Biomedicines. 2021;9:391. Bhattacharjee A, et al. J Biol Chem. 2016;291:16644–16658. Cox DW. Br Med Bull. 1999;55:544–555.

ENX-103 effectively delivers copper to the brain, especially to mitochondria, improving cellular respiration

Engral

ENX-103 has the potential to increase survival and improve quality of life for patients with Menkes disease

Median survival in Menkes disease mouse model improved from 14 days to 203 days with ENX-103 treatment

ENX-103 treatment resulted in the survival of 82% of Menkes model (*mo-br*) mice at 10 weeks

Image courtesy of Vishal Gohil, PhD

Untreated

14 days (death)

Image from Guthrie LM, et al. Science. 2020;368:620–625. Reprinted with permission from AAAS.

- wild-type
- mo-br vehicle
- *mo-br* elesclomol
- *mo-br* copper histidinate
- *mo-br* ENX-103

THANK YOU

